
  

  
Abstract— A hardware hash sorter for the Fermilab BTeV 

Level 1 trigger system will be presented. The hash sorter 
examines track-segment data before the data are sent to a system 
comprised of 2500 Level 1 processors, and rearranges the data 
into bins based on the slope of track segments. We have found 
that by using the rearranged data, processing time is significantly 
reduced allowing the total number of processors required for the 
Level 1 trigger system to be reduced. The hash sorter can be 
implemented in an FPGA that is already included as part of the 
design of the trigger system. Hash sorting has potential 
applications in a broad area in trigger and DAQ systems. It is a 
simple O(n) process and is suitable for FPGA implementation. 
Several implementation strategies will also be discussed in this 
document. 
 

Index Terms—BTeV, Trigger, Hash Sorter, Firmware. 
 

I. INTRODUCTION 
TeV is a B-physics experiment that has been proposed [1] 
to run in the Tevatron at Fermilab.   

The core of the BTeV detector is a 30 station Si-pixel inner 
tracker immersed in a 1.6 Tesla dipole field.  There are over 
20x106 active rectangular pixels each measuring 50µ x 400µ.  
Each pixel station has two planes, one with narrow pixel 
dimension oriented in the x-direction, called “non-bend view”, 
and the other with narrow dimension in the y-direction called 
“bend view”.  The coordinate data of particle hits measured by 
the pixel detector are sent to the Level 1 vertex trigger system. 

The primary task of the Level 1 vertex trigger system [2-4] 
is to select events of interest for B-physics analyses by 
reconstructing charged tracks and primary interaction vertices 
and finding tracks detached from the primary vertices. 

The track and vertex reconstruction is done in two phases.  
The first phase is executed in the segment processor.  Hits on 
three adjacent silicon stations are linked together to form track 
segments, called “triplets”.  The segment processor forms two 
types of triplets, “internal” and “external”, corresponding to 
the beginning and the end of a track in the pixel detector. 

In the second phase, the triplet information is passed to the 
track and vertex processor, which consists of a farm of 
embedded processors.  The farm matches “internal” with 
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“external” triplets to form complete tracks.  The track 
parameters are used to find primary vertices for tracks that 
appear to come from a common point in the beam region.  The 
trigger decision is based on the presence of tracks that appear 
to be “detached” from a primary vertex, since this is a 
characteristic feature of B particles.   

II. PRINCIPLE AND IMPLEMENTATION 

A. Hash Sorting for O(n2) Algorithm Acceleration 
Matching internal to external triplets is a time-consuming 

process.  Each external triplet is checked against the entire list 
of internal triplets for possible matches.  The process is an 
O(n2) algorithm.  In the BTeV level 1 trigger baseline design, 
this process is done in C-code and takes significant portion of 
processing time. 

A necessary condition for an internal triplet to match an 
external triplet is that their slopes in the non-bend view must 
be approximately equal.  One possible solution is to sort the 
triplets into several bins based on their slopes.  With sorted 
data, each external triplet will only need to be matched to 
internal triplets in one or two bins, rather than all.  Therefore 
each external triplet will need only to be checked against a 
much smaller list resulting in a significant reduction of the 
processing time. 

The sorting can be done in an FPGA before the data is sent 
to the embedded processor.  We will discuss this aspect next. 

B. Firmware Implementation 
A test design has been implemented on the current pre-

prototype version of the Level-1 Track and Vertex hardware.  
This hardware that forms the basic unit of the track and vertex 
farm consists of four TI 671x Digital Signal Processors 
(DSP's), three FPGA's and two microcontrollers.  Triplet data 
from the segment processor is received by this hardware after 
going through an event-building switch.  One of the FPGA's 
on this hardware, called Buffer Manager (BM), sends all the 
triplet data for one crossing to one of the four DSP's. 

The hash sorting function is performed parasitically in the 
BM.  One block named “DxBin” and four blocks named 
“HashBlk” (one for each DSP) are added into the BM FPGA. 

The DxBin block simply calculates triplet parameters used 
for hash sorting.  When the triplet data are filling the DATA 
RAM buffer for each DSP, the data lines “D” and address 
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lines “A” are monitored by the DxBin block.  The hash bin 
number “NBin” is calculated based on the non-bend view 
slope of the triplet.  The triplet ID, or serial number of the 
current triplet, “T3id”, is also calculated, which is simply the 
higher bits of the DATA RAM address “A”.   

The hash sort block, HashBlk and the DATA RAM buffer 
are shown in Fig. 1.  The core part of the HashBlk block 
consists of two memory areas, “PointerRAM” (Qa) and 
“IndexRAM” (Qb).  The “PointerRAM” stores the pointers of 
triplets.  The “IndexRAM” has three bit fields: “Qb.bgn”, 
“Qb.cnt” and “Qb.endd”, which represent the beginning 
location, the count and the end location of a hash bin.  While 
the triplet data are filling the DATA RAM buffer, the hash bin 
number NBin and the triplet ID T3id associated with the 
triplet are used to fill the “PointerRAM” and the “IndexRAM” 
simultaneously.  The following actions are performed in the 
process: 

1. The contents of the IndexRAM at the location 
associated with the hash bin number NBin are read.  

2. If the current triplet is not the first to be filled into the 
current hash bin, i.e., if the count of the bin “Qb.cnt” 
is not 0, the PointerRAM location, indexed by the 
“Qb.endd” will store the triplet ID, T3id. 

3. If the triplet is the first one in the current bin, the ID 
of the triplet T3id is written into both the “Qb.bgn” 
and “Qb.endd” field.  Otherwise, “Qb.bgn” will be 
kept unchanged and only “Qb.endd” will be update 
with T3id.  In either case, “Qb.cnt” will be 
incremented by 1. 

The actions above use only 3 clock cycles, given the 
available time of 4 clock cycles for filling the 4 32-bit data 
words of each triplet.  After these actions, single directional 
link lists of hash bins are formed in the PointerRAM available 
for the later stages to use--data are logically hash sorted. 

In the next step, data will be downloaded into the DSP via a 
direct memory access (DMA) process.  The data are further 
physically sorted during the download. 

An index table is first dumped into the DSP.  The index 
table will provide the beginning location and the count of the 
triplets in the sorted data block for each hash bin so that the 

Level 1 trigger software can access the sorted data efficiently.  
The table is very ease to produce in fly during DMA. 

After downloading the index table, the triplet data are sent 
out via DMA.  The order of presenting the triplet data to the 
output port is controlled by the link lists stored in the 
PointerRAM.  After DMA, the data stored in the DSP memory 
become physically hash sorted.  The entire download process, 
including downloading both index table and triplet data block, 
is completed in a single DMA process.  After the DSP started 
the DMA, no further software intervention is needed. 

It should also be pointed out that the PointerRAM and 
IndexRAM are actually implemented in different area of one 
physical dual-port RAM block.  The process functions of the 
hash sorting have been so adjusted that this kind of 
implementation option can be realized.  In modern FPGA 
devices, dual-port RAM blocks are commonly available while 
the number of blocks per device is still limited.  So it is a 
useful design practice to combine the memories into a single 
memory block. 

III. SILICON RESOURCE USAGE 
The hash sorter described above was compiled in our 

current “Buffer Manager” FPGA device (Xilinx [5] 
xc2v1000).  The following table shows the silicon resource 
usage reported by the compiler: 
Resource Total 

available  
Used in 
DxBin 

Used in 
HashBlk 

Slices 5120 52 (1%) 72 (1%) 
Slice Flip Flops 10240 73 (1%) 51 (1%) 
4-input LUT’s 10240 35 (1%) 75 (1%) 
Block RAM’s 40 0 1 (2%) 

The entire hash sorter uses 1 DxBin block and 4 HashBlk 
blocks.  Then the total logic cell usage is about 7% and the 
memory block usage is about 10% in the device. 

IV. TIMING RESULT 
Computation times (in CUP clock cycles) of the Level 1 

vertex trigger algorithm for the BTeV baseline design are 
measured to study the acceleration effects with hash sorting.  
Simulated events with 2 to 11 interactions per beam crossing 
are fed to the trigger algorithm.  Each of the measurement 
points shown in Fig. 2 were obtained by averaging the total 
execution time of the trigger algorithm on roughly 2500 
simulated beam crossings.   

Two sets of measurements are made.  The first set uses 
unsorted triplet data and the second uses hash sorted triplet 
data.  One can see that the segment matching process has been 
improved by a factor of 4 to 4.5 by using hash sorted triplet 
data.  For comparison, we also plotted the total trigger process 
times (that includes segment matching, track processing and 
vertex finding). One can see that the segment matching 
process takes a large portion of the entire process. 
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Fig. 1.  The hash sorting block (HashBlk) and the DATA RAM buffer are 
shown.  The index table and sorted data represent results after DMA. 



  

The timing measurement was performed using a 1.13 GHz 
Pentium III-M processor.  Although the fast processors that 
we will choose in the future will supersede the absolute CPU 
time, the relative CPU clock cycles should exhibit a similar 
trend of acceleration with hash sorting. 

V. DISCUSSION 
In computing algorithm, “hashing” is a process to convert a 

key K of a data item into a number:  
MmKhm <≤= 0),(  

where h(K) is called hash function and M is the total number 
of storage locations.  The data item is then stored in the 
location indexed by m for future use.  The hash function can 
be in any form, although remainder modulo a prime number M 
is chosen in many textbooks [6-7]. 

The process described early in this paper can be viewed as a 
special case of hashing process.  The hash function we choose 
is binning just as the one when we book histogram.  When the 
variable or key K and bin size are properly chosen, the 
function is simply shifting and masking out of lower bits. 

The process can also be viewed as a special case of “radix 
sorting/searching” or “bucket sorting/searching”.  In some 
aspect, it can be visualized as an extension of histogram 
booking too.  We choose the term “hash sorting” to emphasize 
the fact that each storing or recovering of a data item is a 
single memory access. 

Regular sorting is an algorithm of at least )log( nnO , 

while hash sorting is )(nO , with unsorted items within a bin.  
In many applications, the absolute order between two close up 
items cannot be well defined due to measurement errors on the 
variable or key K that sorting algorithm is based on.  In this 
case, the result of hash sorting is not any worse than the 
regular sorting.  However, the simplicity of hash sorting 
clearly becomes favorable comparing with the complexity of 
regular sorting. 

Hash sorting can be implemented either in software or 
hardware.  In hardware implementation, the only necessary 
function is to fill the “IndexRAM” and the “PointerRAM”.  
The data items are already logically hash sorted once the 

single directional link lists are established in these memory 
locations.  The physical order of the data items is further 
rearranged during the DMA in our example.  In other 
applications, it may not be absolutely necessary.  The 
rearrangement is just to provide some convenience for the 
software in the later stages. In fact, the rearrangement does not 
cost extra process time.   
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Fig. 2.  Numbers of clock cycles needed to process triplet data in a beam 
crossing are plotted.  The triangle points are total clock cycles to process 
unsorted data.  The diamond and square points are ones of segment matching 
with unsorted or hash sorted data. 


